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ABSTRACT: An integral challenge in synthetic circuit design is the selection of
optimal parts to populate a given circuit topology, so that the resulting circuit
behavior best approximates the desired one. In some cases, it is also possible to
reuse multipart constructs or modules that have been already built and
experimentally characterized. Efficient part and module selection algorithms are
essential to systematically search the solution space, and their significance will
only increase in the following years due to the projected explosion in part
libraries and circuit complexity. Here, we address this problem by introducing a
structured abstraction methodology and a dynamic programming-based
algorithm that guaranties optimal part selection. In addition, we provide three extensions that are based on symmetry check,
information look-ahead and branch-and-bound techniques, to reduce the running time and space requirements. We have
evaluated the proposed methodology with a benchmark of 11 circuits, a database of 73 parts and 304 experimentally constructed
modules with encouraging results. This work represents a fundamental departure from traditional heuristic-based methods for
part and module selection and is a step toward maximizing efficiency in synthetic circuit design and construction.
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Similar to any other engineering-related field, computer-aided
design (CAD) tools in synthetic biology are essential for
designing circuits faster, better and more reliably. Numerous
computational CAD tools have been developed recently for the
design and implementation of synthetic gene circuits (a recent
review of these CAD tools available in ref 1).
A step toward automated synthetic circuit design is the

selection of a part set so that the final circuit exhibits the
desired behavior. Parts can either be elementary, such as a
promoter or a gene, or composite that consist of two parts or
more, hence constituting modules. The various approaches that
have been introduced so far address successfully this problem.
However, all of them have one or more of the following
limitations: (i) the input circuit is specified at a low abstraction
level that is construction-based (e.g., a set of promoters, coding
regions, and so on) rather than at a higher abstraction level that
would be function-based (e.g., truth table, logical gate netlist,
custom analog functions, and so on), (ii) a higher abstraction
level specification is used but the biological diversity (i.e., one
functional behavior can be carried out by many different
biological processes) is not considered, (iii) the recycling of
past circuits or modules is not considered and (iv) there are no
guaranties or bounds on the selection optimality.
Table 1 summarizes the features of all CAD tools that can

support the selection of parts and modules to design a synthetic
gene circuit. The GEC language2 was the first tool that allowed
the user to specify the circuit at a high abstraction level as a
program and then a compiler would translate this program into
sequences of genetic parts, although biological diversity,
optimality, and module reuse are not considered. Another

notable example is iBioSim3 that can take into account the
module reuse, although it only operates at a low specification
level. In contrast, this work by Marchisio et al.4 allows the user
to specify a functional circuit behavior by a truth table and then
to automatically construct a topology, albeit without module
reusability or optimality. A recent work-flow called TASBE5

goes a step further, as it allows the user to specify the circuit
behavior at a language level, and then, it uses the heuristic
algorithm from MatchMaker6 to select parts and modules,
although it does not take into account biological diversity and
optimality considerations. More recently, we developed the
SBROME framework7 that allows circuit specification by both
netlists and analog I/O functions, while it takes into account
the biological diversity and module reuse. However, both the
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Table 1. Feature Comparison of Various SynBio CAD Tools

tool ref

abstraction
level of circuit
specification

accounts for
biological
diversity

module
reuse

supported

provides
optimal part
allocation

GEC 2 high no no no
iBioSim 3 low no yes yes
CAD tool 4 high yes no no
TASBE 5 high no yes no
SBROME 7 high yes yes no
this work high yes yes yes
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topology searching (i.e., finding a biological network motif for
each logical gate) and the part and module selection are still
partially based on heuristic algorithms that do not guarantee
optimality.
There is currently no method that can identify the smallest

number of parts and modules to construct a circuit with a
specified function given by a high-level specification, handle the
biological diversity efficiently and take into account the
construction optimization by reusing modules. The integration
of these characteristics in a single tool would be desireable,
since abstract circuit specification and accounting for the
biological diversity enlarge the solution space and design
flexibility while the optimal selection of parts and modules can
reduce the time and cost to produce the final circuit. Efficient
part and module selection algorithms are essential to
systematically search the solution space and their significance
will only increase in the following years due to the projected
explosion in part libraries and circuit complexity.8

This paper presents a method that incorporates all these
characteristics. We first classify the gene circuit specification
into three abstraction levels as in Figure 1. By doing so, the user
can specify their design at any combination of the two highest
abstraction levels (i.e., functional and biological) while parts
and modules curated from literature are specified at the lowest
abstraction level. To find an optimal circuit construction, we
need to find a part/module set that can be assembled together
to match with the user specification. Since the circuit and part/
module library specifications are at different abstraction levels,
our method first transforms all specifications into the second
abstraction level (biological) and then performs the part
selection. While the conversion for the specification of parts
and modules from a lower level to an upper level is
straightforward, the transformation of the user circuit
specification from the highest level to the intermediate one
by a naive approach (i.e., consider all possible network motif
combinations) leads to a combinatorial explosion because of
the biological diversity present. To avoid that, we merge all the
combinations into an unique graph to exploit the overlap
between these combinations. To select a set of parts and
modules that optimizes the circuit construction, we define a
cost function of a set of parts and modules that can
approximate the number of amplification/ligation steps to
build the circuit from that part/module set. For that cost
function, we develop a dynamic programming (DP) based
algorithm that adheres to the same principles as technology
mapping that is used in digital electronic circuits,9 but it is
adapted to this application so it takes into account the cross-
talk effects and the compatibility checking. These necessary

modifications, however, introduce an exponential worst-case
complexity, which can significantly impact the algorithm ability
to provide solutions for large libraries or large circuits. To
overcome this problem, we introduce three techniques to
improve the computational performance of the base method,
that are based on symmetry checking, information look-ahead,
and branch-and-bound. After integrating the extended method
into the SBROME CAD framework,7 we evaluated our
approach with a benchmark of 11 different circuits and a
library of 73 parts and 304 modules that were identified from
an extensive literature curation that focused on E. coli
constructs published the past 20 years.

■ RESULTS
Part and Module Library. We curated the literature to

construct a part and module library. To build the module
library, we collected the description of 102 E. coli plasmids that
were published in 19 papers over the past 2 decades. Each
module is constructed from a plasmid fragment as described in
the Methods section. The final library, which contains 73 parts
and 304 modules, is described as in Table 2.

Benchmarking and Performance. We propose the
method of Motif-Merging Dynamic Programming (MMDP)
that consists of two steps, which are the expansion step to
expand from functional behaviors to biological processes and
the selection step to select an optimal set of parts and modules.
For the first step, we propose to merge all topology motif
combinations into an unique graph (algorithm 1 in the
Methods section) together with an extension (see the Methods
section). For the second step, we propose to apply a DP-based
algorithm (algorithm 2 in the Methods section) together with
two extensions (see the Methods section). A benchmark that
contains 11 circuits (Table 3, D1 and D2 are two circuits
described in ref 10) is used to evaluate the proposed
methodology. The proposed solution cost (which is the total
cost of parts and modules used in this solution, see the

Figure 1. Overview on the circuit representation with different abstraction levels.

Table 2. Part and Module Library

library description quantity

parts 73
promoters 31
coding regions 40
noncoding regions 2

modules 304
plasmids 102
references 19
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Methods section) and the running time of our method for each
circuit is presented in Table 3. For circuits that have been
constructed experimentally (the 2-cascade and the 3-input
AND gate), our method can return the solution that has been
reported in the literature (the 2-cascade in ref 11 and the 3-
input AND gate in ref 12, respectively). Interestingly, for the
design D2 that was reported in ref 10 for mammalian cells, our
method resulted in a simple solution for E. coli cells by utilizing
chaperone proteins as shown in Figure 2.
To evaluate its performance, we first evaluate MMDP with a

naive Exhaustive Search DP-based algorithm (ESDP) that
traverses all topology motif combinations sequentially and
applies our proposed DP-based algorithm and extensions for
each combination to find the finally optimal set of parts and
modules. Since the DP-based algorithm is an exact algorithm
and the merged graph encodes all combinations, the optimal
sets that are found by these two methods (i.e., MMDP and
ESDP) are the same. Therefore, we only compare the running
time of those methods. The comparison result that is presented
in Table 3 shows that our method is faster than the naive
approach and the speed up increases with the circuit size. In
general, for a circuit with n gates, each gate has m topology
motifs and each motif has k nodes in average then there are
totally Θ(mn) topology motif combinations while the size of the
merged graph that encodes all these combinations is only
Θ(mnk). Suppose that the computational complexity of the
DP-based algorithm with extensions is φ(x) for a graph with x
nodes. The computational complexity of our method and the
ESDP method is Θ(φ(mnk)) and Θ(mnφ(nk)), respectively.
Therefore, if φ is a quasi-polynomial function (i.e., it does not
increase so fast as an exponential function) then our method
will be faster and the speed up increases for a larger circuit size
n because of the term mn. To illustrate this analysis, the total
number of topology motif combinations (i.e., Θ(mn)) and the
merged graph size (i.e., Θ(mnk)) of each circuit are also
presented in Table 3.
Second, we compare our method with an alternative method

(denoted by MMHS for Motif-Merge Heuristic-Search) that
also merges all topology motif combinations into an unique
graph (i.e., it also applies algorithm 1 with an extension), but

then, it applies a heuristic search approach (introduced in the
branch-and-bound extension in the Methods section) to select
the part/module set. We compare their proposed solution cost
and running time. Since both methods (i.e., MMDP and
MMHS) use the same approach for the first step (i.e., algorithm
1 with an extension), this comparison is actually to compare
between the DP-based algorithm with extensions and a
heurisric search algorithm to select the part/module set in
the second step. The comparison result that is presented in
Table 3 shows that although our method is slower than the
MMHS method, it proposes a lower cost (which means a more
compact part/module set) than the one of the MMHS method
(8 of 11 cases). This is a significant and practical improvement
over heuristic based methods since the extra computation time
required by our method is much less than the time needed to
construct the circuit from a part/module set with a larger cost.

■ DISCUSSION
In this work, we described a part and module selection strategy
that returns the optimal set of parts and modules for synthetic
gene circuit design automation. There are several extensions of
this work that warrant further investigation. First, our selection
method has to store a set of all subsolutions of each node to
check the contraints of the cross-talk absence and the
connection compatibility. Hence, we can improve the computa-
tional performance more by reorganizing this subsolution set as
a hierarchical tree instead of a linear list as in the current
method (algorithm 2 in the Methods section). Second, the
current method is limited to circuits that topology is a single
output and directed acyclic graph (i.e., the graph contains only
one output node and no directed loop). Therefore, extending
this method to general graphs will be useful in cases where
designs contain loops and/or multiple outputs. A solution
would be to decompose the circuit into subcircuits that have a
directed acyclic, single output topology. After applying the
algorithms presented here, we can combine each matchings
together to form a solution for the whole circuit, provided that
both the cross-talk and compatibility constraints are satisfied.
More far-reaching and ambitious extensions of this method

include its application in multi-cellular system design, where the

Table 3. Result Summarya

proposed solution
cost running time (second)

design
no. of
gates

no. of possible topological
motif combinations

no. of nodes
(merged topology) MMHS

MMDP,
ESDP ESDP MMHS MMDP

2-cascade 2 3 21 2 − ε 1 − ε 2.6 × 10−1 8.0 × 10−2 1.3 × 10−1

3-cascade 3 3 24 3 − ε 2 3.2 × 10−1 7.0 × 10−2 1.7 × 10−1

4-cascade 4 3 27 3 − ε 3 − ε 4.3 × 10−1 9.0 × 10−2 1.8 × 10−1

band-detector 3 6 35 6 5 3.9 2.6 × 10−1 1.5
feed-forward 3 18 49 2 2 7.9 1.6 × 10−1 3.1 × 10−1

not-and 2 27 51 2 2 8.6 2.2 × 10−1 4.5 × 10−1

3-in-and 2 324 80 3 3 − 3ε 3.1 × 102 4.5 × 10−1 1.2
3-in-not-and 3 432 81 5 − ε 4 − 2ε 4.6 × 102 4.4 × 10−1 8.8
2-to-1-mux 4 972 94 7 5 − 3ε 2.8 × 103* 1.3 3.2 × 101

D1 4 11664 124 7 6 − 4ε 4.9 × 104* 8.5 × 10−1 2.4 × 102

D2 5 8748 127 8 6 − 4ε 3.8 × 104* 1.9 3.7 × 102

aThe first three columns depict the input topology size (i.e. the number of logic gates), the number of all topology motif combinations and the
number of nodes of the merged graph. The proposed solution cost and the running time for different approaches are showed in last five columns (*
refer to estimated). MMHS (Motif-Megre Heuristic-Search), MMDP (Motif-Merge Dynamic-Programming), and ESDP (Motif-Exhaustive-Search
Dynamic-Programming) respectively denote the method that merges all motif topology combinations (algorithm 1) and apply a heuristic search, the
method that merges all topology motif combinations (algorithm 1) and apply a DP-based algorithm (algorithm 2) with extensions, and the method
that traverses all topology motif combinations and applies a DP-based algorithm (algorithm 2) with extensions for each combination.
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objective is to minimize both the number of cell types and the
size of the resulting circuit. In addition, the objective function
can be further extended to take into account several assembly
methods, including one-pot methodologies. Furthermore, we
can also incorporate additional criteria for the module choice.
For example, a circuit can contain several AND gates but the
role of each gate can be different, since the circuit functionality
can be more sensitive to their operation, which can be assessed
through critical path and sensitivity analysis. Such addition can
lead to circuits with increased tolerance to parameter variation
and extrinsic noise. If the cost of a solution can be estimated
through the cost of subsolutions then we can apply the
methodology of this paper (i.e., merge topologies that share
common motifs and utilize the dynamic programming approach
with an branch-and-bound extension) in order to reach a
solution. Otherwise, we can modify the current algorithm to
find a list of candidates first and then we can simulate each of
them to select the optimal one based on these new criteria.
Finally, the methodology presented here can be extended for
higher abstraction levels that would allow the high-level
description of complex modules.

The work presented here brings us a step closer to the
automated design of robust synthetic circuits. A central
challenge that remains is the automated topology selection,
since in this work the abstract topology is provided by the user.
Toward that goal, we can borrow the multilevel logic
optimization from electrical engineering in the case of digital
circuits and use heuristic methods for analog dynamics. In
addition, in the work presented here, we do not consider
environmental and chassis parameters that may be critical to
the functionality of the parts, modules, and, hence, final circuit.
The existence of characterization data for parts and modules in
distinct environments and strains can certainly be taken into
account to increase the chances of a successful design.22

Furthermore, the integration of whole-cell, multi-scale mod-
els23,24 with CAD tools will bring us a step closer to accurately
describe the trifecta of circuit, cell and environment. This
integrative, computationally-driven approach will lead to a
better understanding of how organisms and circuits adapt and
respond in dynamic environments.25,26,27

Figure 2. Proposed solution for the circuit D2.10 Notation shapes for molecular species and genetic parts are used as the same in Figure 1. (a) The
input circuit topology. (b) A proposed circuit is represented at the biological level, the mRNA from constitutive promoters is not labeled. (c) A
proposed set of 6 modules (with the name of plasmids that these modules are amplified, all plasmids are from refs 12 and 21) to construct the circuit
D2 (constitutive promoters are not labeled); they can be assembled into two plasmids (upper row and lower row respectively). Colors are used to
show if components belong to the same module or not in parts b and c.
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■ METHODS
Definitions. Abstraction Levels of a Circuit Specification.

We define the following circuit specifications with decreasing
abstraction levels (see Figure 1)

• Functional level represents the relationship between the
input signal information (e.g., concentration, light
density, temperature) and the output signal information,
but it does not provide information regarding the
underlying biological processes that lead to this relation-
ship. For this level, a more detailed representation is
possible by introducing intermediate signals and specify-
ing their relationship. This relationship can capture both
digital and analog behavior. For example, a circuit can be
specified by a truth table for digital behavior or by a
function for analog behavior (e.g., f(x,y) = ln(x) + ln(y)
as in ref 13) or it can be described more detailed by a
network of logical gates or a network of computational
functions (e.g., positive-logarithm, adder as in ref 13).

• Biological level represents how the circuit can process the
input signals to produce the output signals through
biological processes such as transcription, translation, or
other molecular interactions.

• Physical level represents the DNA sequence of the circuit.
This sequence is also annotated as a linear sequence of
genetic parts (e.g., promoter, gene, RBS, terminator) and
their relative position (i.e., downstream or upstream of
another part).

Since three levels above are arranged by a decreasing
abstraction order, one instance in an upper level may have more
than one possible corresponding instances in the lower level.
One relationship in the functional level can be generated by
multiple and distinct biological processes because of the
biological diversity. For instance, a logical AND operator of
two inputs can be generated through a hybrid promoter,14,15 a
heterodimer formation,12,16 or through the binding of two
RNAs.17,18 Similarly, a circuit specification at the biological level
can have more than one corresponding instances at the physical
level by swapping the order of genetic parts or altering the final
physical implementation. For instance, both specifications at
the physical level pCONST-lacI-pLAC-gfp and pLAC-gfp-
pCONST-lacI have the same specification at the biological
level. Once a circuit specification is provided at the physical
level, the synthetic circuit can be constructed in the lab.
Circuit Graph. To give the user more flexibility to select the

abstraction level of the circuit specification that is optimal for
the application at hand, the circuit is specified at a mixture
between the functional level and the biological level. This
specification is represented by the same circuit graph definition
that was introduced in the SBROME framework.7 Briefly, each
circuit is represented by a circuit graph G = (V, E, VI, VO, τ1, τ2,
ν) where V and E are the vertex set and the edge set, VI and VO
are subsets of V that represent inputs and outputs respectively,
τ1 is the function that assigns each node with a type which can
be either a molecular species (e.g., ligand, mRNA, protein) or a
functional device (e.g., AND gate, NOT gate, oscillator) (see
Table 1 in ref 7 for more details), τ2 is the function type for
each edge (activatory or inhibitory), and finally the function ν
assigns each node with a name (e.g., tetR, lacI). The separation
of type and name of a node allows us to increase the abstraction
level further by leaving the name of some nodes as “unknown”
although their types have to be specified. A circuit graph that
contains “unknown” nodes is called an abstract circuit graph.

Part and Module Library. Each part and module is a DNA
sequence that is specified at the physical level. To build the
module library, we collected the description of 102 E. coli
plasmids. These plasmids were constructed and published in 19
papers. Next, for each plasmid, we enumerated all fragments
that contain two or more consecutive parts and we removed
any repeated or redundant fragments. Consequently, each
fragment (which was represented at the physical level) was
converted into a network of molecular species at the biological
level. This conversion was done through a simple trans-
formation as in ref 7. Finally, only fragments where the
corresponding network has one output were imported as
modules into the library. The final library is specified as in
Table 2.

Cost Function. The cost of a given solution is defined as the
number of PCR and ligation steps required to build the circuit
by using the parts/modules in the solution by standard cloning.
For that purpose, the cost function can be defined simply by
the number of parts and modules since we need one step (i.e.,
one PCR and one ligation) for each part/module. However, we
have to put a reward for modules that are full plasmids since
they may be transformed directly into the host cell without
amplifying them and ligating them with other parts or modules.
More specifically, for a set S of parts and modules, the cost
COST(S) of S is defined as COST(S) = ∑s∈S COST(s), where
the cost COST(s) of part/module s is set to 1 − ε, with ε being
equal to zero in all cases, except when the module exists in a
single plasmid. The parameter ε is equal to 0.05 here. By doing
that, we favor solutions that do not require the simultaneous
presence of multiple plasmids, which can be incompatible or
create transformation issues, in the host cell.

Part and Module Selection Problem. Given an (abstract)
circuit graph and a library of parts and modules, find a
minimum-cost set of parts/modules that can be assembled
together to match with the given input circuit graph so that all
connections are compatible and in the absence of cross-talk. In
this research, we limit our study for only circuits that the
topology is a single output directed acyclic graph.

Expansion from Functional Behaviors to Biological
Processes. For the circuit and library specifications to be
compatible, the user circuit specification is first represented in
the corresponding biological level. To do so, each functional
device node in the input circuit graph is substituted by a
topology motif (i.e., a network of interacting components).
However, there are more than one substitution for each such
node because of the biological diversity, and thus, the number
of all possible substitution combinations increases exponentially
with the number of functional device nodes. Therefore, a naive
approach that considers all these combinations sequentially is
very inefficient. Instead, we propose to merge all these
combinations into one graph only (Figure 3 illustrates how
this is performed by using a NOT-AND circuit as an example),
and then, a selection algorithm is applied on the combined
graph to find the optimal physical specification. Since many
combinations share common topology motifs, this approach
improves the performance by avoiding the repeated searching
on these common motifs.
Formally, algorithm 1 presents the way to merge all possible

topologies for an input circuit graph. For each functional device
node, the algorithm searches the motif library to find motifs
that are compatible to the functional representation of the
device node. A motif is deemed compatible when it
corresponds to the same functional behavior and there is a
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mapping between its I/O and the I/O of the functional device
node. In the current version, the input type and the output type
of any circuit are ligand and protein, respectively. When two
functional device nodes are connected together, the output type

of the first device node (which is also the input type of the
second device node) is represented as a mRNA, which is the
standard signal carrier for transcription-based devices.19

Whenever a functional device node is substituted by a set of
topology motifs, a selector node is added to merge the output
of all these motifs, as proposed in ref 20. However, the
introduction of selector nodes prevents the matching between
the merged graph with a set of parts and modules in the library
since these selector nodes are not part of any module. To avoid
that, we simply remove these selectors by expanding all
connections that are possible in a given selection. The
destination node of these expanded connections is marked as
a “selector” node (Figure 3e) and are processed during the part
and module selection phase.

DP-Based Algorithm for Part and Module Selection.
After the input circuit graph is expanded to encode all possible
topologies at the biological level, the resulting graph is matched
with parts and modules from the library to identify the optimal
set. The selection problem is similar to the topology mapping
problem,9 which can be solved efficiently by using a dynamic
programming approach. However, biological circuits are
different from electrical ones in at least two important aspects.
First, biological circuits use chemical molecules as signals and
thus the connection between their components is not always
compatible. Second, these circuits have no wiring, thus a
module cannot be used more than once in the same circuit
because of cross-talk effects. Thus, the optimal subsolutions
may be incompatible or with possible cross-talk effects and we
cannot combine them together to identify a globally optimal
solution. Therefore, the optimal solution sometimes has to be
constructed from nonoptimal subsolutions, and this breaks the
optimal substructure condition that is essential for the dynamic
programming approach.
To overcome these obstacles, we have to store both

nonoptimal subsolutions and the information about the
connection compatibility and cross-talk effects to ensure that
an optimal solution is found. For each node v, a transitive input
subgraph of v is a subgraph that contains node v and all nodes
connected to v by directed paths. A transitive fan-in subgraph of
v is a connected subgraph of a transitive input subgraph of v
that also contains v itself. A subsolution of v is a matching of a
set of parts and modules with the transitive input subgraph of v
that satisfies the constraints of connection compatibility and
cross-talk absence. The set R(v) is used to store all possible
subsolutions of v and their necessarily related information. In
particular, each element r ∈ R(v) is a 4-component vector that
includes (i) the subsolution construction cost, (ii) the output
signal of this subsolution (i.e., a molecular species that is
matched with v), (iii) all molecular species that are used as
signals for this subsolution, and (iv) information about the
subsolution construction so that the procedure TRACEBACK
can find the way to assemble parts and modules to build this
subsolution.
The key idea here is that the set R(v) is constructed

recursively following algorithm 2. All nodes are traversed in
their topological order (i.e., if there is an edge from node u to
node v then node u is traversed before node v). At each node v,
the procedure MATCH finds a matching set M in which each
element is a matching between a molecular species network
(which represents a part or a module at the biological level)
with a transitive fan-in subgraph at v. The procedure MATCH
also checks to ensure that when a node in the transitive fan-in
subgraph is matched, all its incoming edges are also matched,

Figure 3. Example on the biological expansion of a NOT-AND circuit.
Notation shapes for logical gates and molecular species are used as the
same in Figure 1. (a) Functional specification of a NOT-AND gate.
(b) Each gate is expanded with two different motifs, one is direct from
the ligand input and another is through a YES gate to convert from
ligand to mRNA. (c) Each YES gate is expanded with two different
motifs while the lower AND gate is expanded with three different
motifs, other gates (two NOT gates and the upper AND gate) are not
expanded since they have only one motif for their corresponding
inputs and outputs. (d) Each gate is expanded to the corresponding
biological representations. Note that the last motif of AND gate
(through the complex of a ligand and a protein) is not symmetric so it
is duplicated to ensure all possible connections are considered. (e)
When all seletors are removed, the resulting graph can represent all 27
different topologies for the NOT-AND circuit. Nodes denoted with a
cross (×) are new selector nodes.
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except in the case of a selector node where only one incoming
edge is necessary to be matched. Next, for each matching m ∈
M, INPUT(m) is a set of circuit graph nodes, each matched
with an input node of the network. Finally, any pair of m and a
combination of subsolutions (in which each of them is a
subsolution of a node in INPUT(m) respectively) that satisfies
the constraints of connection compatibility (checked by the
procedure COMP) and cross-talk absence (checked by the
procedure CROSS) forms a subsolution of v that is added into
R(v).
Algorithmic Extensions for Increased Performance.

Algorithm 2 can be thought of as an exhaustive search that
investigates all possible solutions systematically, but its
performance is improved by eliminating solutions that violate
the constraints of the connection compatibility and cross-talk
absence as early as they occur. However, to explore all
subsolutions of a node, we have to consider all subsolution
combinations from fan-in nodes. Therefore, the computational
cost of this operation at each node can be exponential. To

reduce the worst-case complexity, we need to reduce the
number of subsolutions that are kept at each node by
eliminating unnecessary ones. The following three extensions
aim to achieve exactly that.

Detect Symmetric Motif Inputs to Eliminate Duplicated
Subsolutions. When a functional device node that has more
than one input is substituted by a topology motif, we have to
consider all possible connections between preceding nodes
(nodes that are connected to this functional device node in the
input circuit graph) with the input nodes of the motif (as for
the AND gate that uses a ligand-protein complex in Figure 3d).
However, in many cases, the input nodes of the motif may be
symmetric (i.e., their role is the same), and we only need to
consider one representative connection and skip all the other
ones (as for the AND gate that uses RNA complex or protein
complex in Figure 3d). This improvement (line 18 in algorithm
1) helps the algorithm remove all duplicated subsolutions at the
selector node generated by the substitution.
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Utilize a Connection Look-Ahead Scheme to Prune
Subsolution Branches. Algorithm 2 looks ahead at the type
of connection in a node to decide if a subsolution at this node
can be developed further to a final solution or not (line 16 in
algorithm 2). For example, if a node is connected to another
node by an activatory edge but all subsolutions at that specific
node correspond to it having an inhibitory output, that solution
path is abandoned.
Apply Branch and Bound to Eliminate Subsolutions.

Although a direct DP application without keeping all
nonoptimal subsolutions is not possible, a branch-and-bound
scheme can be applied to eliminate all subsolutions that cannot
lead to a finally optimal solution. This can be achieved in the
following two cases:

• If there are two subsolutions that share the same
biological network but have different cost, then if the

subsolution with a smaller cost leads to a violation on the
constraints of the cross-talk absence or the connection
compatibility, so does the subsolution with a larger cost.
Therefore, the subsolution with a larger cost can be
pruned without losing the optimality (lines 19−25 in
algorithm 2).

• Suppose that a nonoptimal solution X has been already
found. Let S be a subsolution such that COST(S) >
COST(X), then any solution X′ that is developed from S
also contains all parts and modules of S, thus COST(X′)
= ∑s∈S COST(s) + ∑s∈X′\S COST(s) ≥ ∑s∈S COST(s)
= COST(S) > COST(X). Therefore, all final solutions
that are developed from S are not better than the
solution X and thus the subsolution S can be pruned
without losing the optimality (lines 6, 7, and 16 in
algorithm 2). To prune many such subsolutions S, we
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need to find the solution X as soon as possible. Since X
does not need to be optimal, we can use a heuristic to
find it. To do that, we can modify algorithm 2 itself to
create a heuristic algorithm by using a threshold value k
to limit the maximum number of subsolutions for each
node (i.e., for each node v, R(v) contains at most k best
subsolutions ranking by the cost). In Table 3, for the
heuristic in the method MMHS and the one for the
branch-and-bound extension in the method MMDP, we
chose k = 20 as it leads to superior performance on this
dataset.
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(7) Huynh, L., Tsoukalas, A., Köppe, M., and Tagkopoulos, I. (2013)
SBROME: A scalable optimization and module matching framework
for automated biosystems design. ACS Synth. Biol. 2, 263−273.
(8) Purnick, P. E., and Weiss, R. (2009) The second wave of
synthetic biology: From modules to systems. Nat. Rev. Mol. Cell Biol.
10, 410−422.
(9) Keutzer, K. (1988) DAGON: Technology binding and local
optimization by DAG matching. Proc. DAC '87 Proceedings of the 24th
ACM/IEEE Design Automation Conference, 341.

(10) Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss,
R., and Benenson, Y. (2007) A universal RNAi-based logic evaluator
that operates in mammalian cells. Nat. Biotechnol. 25, 795−801.
(11) Hooshangi, S., Thiberge, S., and Weiss, R. (2005) Ultra-
sensitivity and noise propagation in a synthetic transcriptional cascade.
Proc. Natl. Acad. Sci. U.S.A. 102, 3581−3586.
(12) Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C., and Voigt, C. A.
(2012) Genetic programs constructed from layered logic gates in
single cells. Nature 491, 249−253.
(13) Daniel, R., Rubens, J. R., Sarpeshkar, R., and Lu, T. K. (2013)
Synthetic analog computation in living cells. Nature 497, 619−623.
(14) Sayut, D. J., Niu, Y., and Sun, L. (2009) Construction and
enhancement of a minimal genetic AND logic gate. Appl. Environ.
Microbiol. 75, 637−642.
(15) Ramalingam, K. I., Tomshine, J. R., Maynard, J. A., and
Kaznessis, Y. N. (2009) Forward engineering of synthetic biological
AND gates. Biochem. Eng. J. 47, 38−47.
(16) Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011)
Engineering modular and orthogonal genetic logic gates for robust
digital-like synthetic biology. Nat. Commun. 2, 508+.
(17) Anderson, J. C., Voigt, C. A., and Arkin, A. P. (2007)
Environmental signal integration by a modular AND gate. Mol. Syst.
Biol. 3, 133.
(18) Callura, J., Cantor, C., and Collins, J. (2012) Genetic
switchboard for synthetic biology applications. Proc. Natl. Acad. Sci.
U.S.A. 109, 5850−5855.
(19) Canton, B., Labno, A., and Endy, D. (2008) Refinement and
standardization of synthetic biological parts and devices. Nat.
Biotechnol. 26, 787−793.
(20) Lehman, E., Watanabe, Y., Grodstein, J., and Harkness, H.
(1997) Logic decomposition during technology mapping. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 16, 813−834.
(21) Lou, C., Stanton, B., Chen, Y.-J., Munsky, B., and Voigt, C. A.
(2012) Ribozyme-based insulator parts buffer synthetic circuits from
genetic context. Nat. Biotechnol. 30, 1137−1142.
(22) Huynh, L., Kececioglu, J., Köppe, M., and Tagkopoulos, I.
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